

OCCURANCES OF AMBER STREAK & BUBBLES IN FLINT GLASS

A CASE STUDY

HIGH QUALITY EXPECTATION EVEN IN SAME INDUSTRY SEGMENT

MARKET COMPETITIONS

CUSTOMER EXPECTATIONS

Problem:

Bubbles in Glass

As the glass batch melted, the glass became filled with of bubbles entrapped gas(CO₂,SO₂,O₂,N₂,H₂O(vapor)). The chief source was the chemical release of carbon dioxide from the carbonates in the batch - the soda-ash, potash and lime. The second source was the gas entrapped in the spaces between the particles of batch During the later materials. stages of the melting, usually called the "fining" or refining, the gas bubbles rose to the top, burst, and disappeared.

Problem:

Amber streak in Glass

Presumably, a long term contact of iron with molten glass results in it's dissolution and gradual oxidation. A change in glass color like yellow/brown can be observed.

It may be occurred because of glass oxidation fluctuation by contaminated cullet, melting foaming, color change, drilling of metal droplets through melting end bottom. This effect could originate in local occurring reducing condition in feeder and working end

Reference:

- 1. Glass Defects by Milloslav Barotuska and Co-authors, Published by Glass Service Inc, Czech Republic
- Recycling of post-consumer glass: energy savings, co2, emission, reduction, effects on glass quality and glass quality melting by TNO glass group, Eindhoven,NL
- 3. Test Report by Zentrum fur glass-and Umweltanalytik.

What is Bubbles-Seed and Blister ?

Glass often contains bubbles of gas which according to their size, are designated as blisters or seeds. The distinction is a purely arbitrary one and the limiting size differs according to the judgment of the selectors and the kind of ware being produced.

"Bubbles" are air or gas filled cavities within the glass.

In the glass making industry, small bubbles were referred to as "seeds" and larger bubbles as "blisters."

Seeds are not likely more than 1/16 inch in diameter which is lesser than bubble diameter.

Both blisters and seeds are flattened, elongated or otherwise distorted during the process of shaping a piece of ware.

Magnified images of Bubble

Bubble

Magnified images of Seed

Seed

Magnified images of Blister

Reference:

Blister

CLASSIFICATION & IDENTIFICATION OF BUBBLES

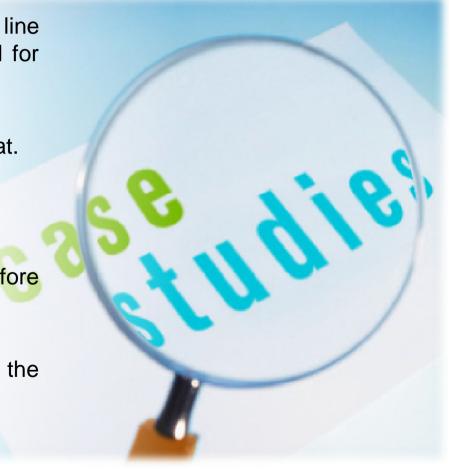
- 1. Classification by Appearances(sizes & shapes)
- 2. Classification by mechanism of bubble origin.
- A. Bubbles generated by the decomposition and other reactions of raw materials(PRIMARY BUBBLES).
- B. Bubbles generated by the nucleation or by growth of the nuclei as a result of the melt oversaturation.
- C. Bubbles produced by chemical reactions with solid impurities.
- D. Bubbles produced by chemical reactions of molten glass with liquid impurities.
- E. Bubbles generated by electrochemical reactions.
- F. Bubbles generated in mechanical way.

A VIEW ON RELATIVE QUALITY REQUIREMENT OF SEEDS GLASS MARKET SEGMENT WISE

Financial Impact

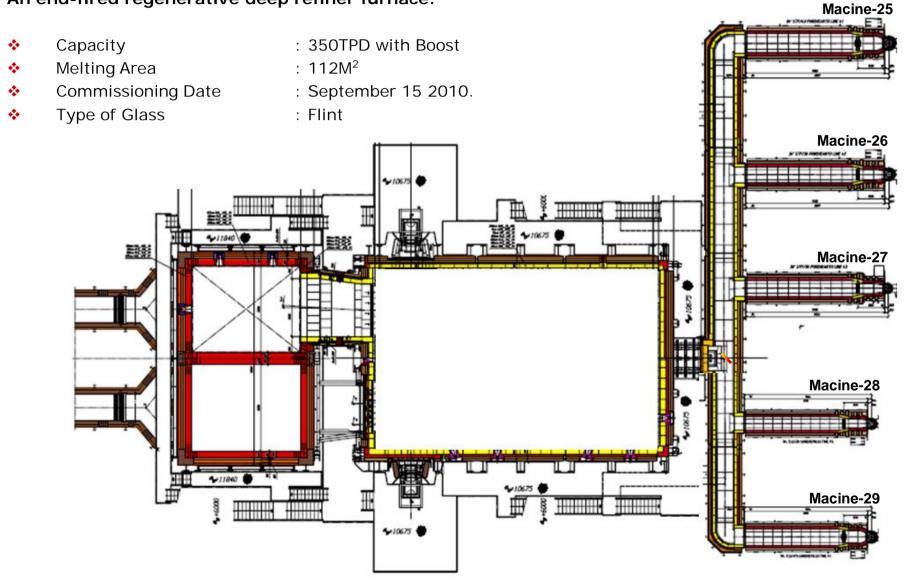
GLASS MARKET	SEED/OZ	RELATIVE SEED QUALITY	*
LCD Display		10X better than TV Panel glass	*
TV Panel		10X better than Float glass	·
Float / Flat		1000 to 10000X better than container glass	
Textile Fiber		100x better than container glass	*
Tableware	< 2	10x better than container glass	
Lighting Glass	~ 25	2x better than container glass	*
Container	10 ~ 20	10x better than funnel glass	•
TV Funnel	~ 200	2x better than wool insulation fiber glass	***
Insulation Fiber	~ 400		

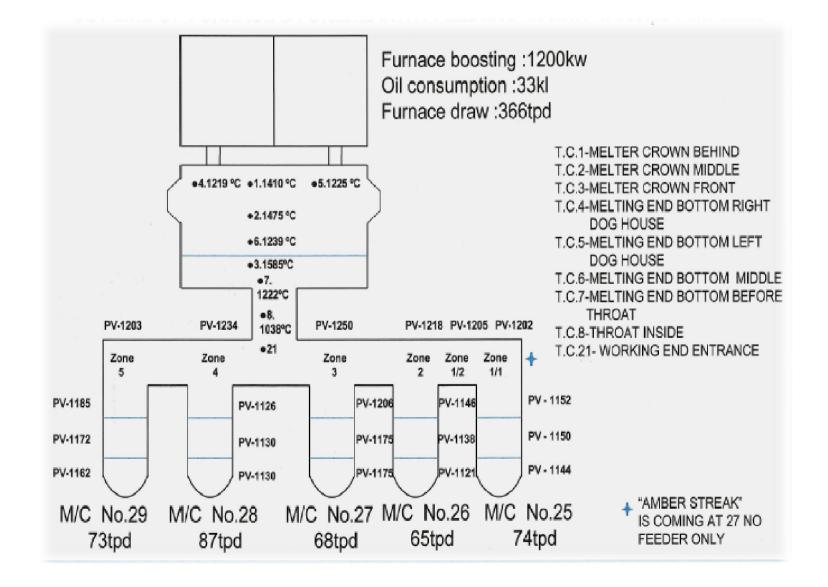
- Fewer defects especially fewer remaining bubbles has become a major requirement in new quality standards for many commercial glasses.
- For example, in the TV glass production, a rate of six bubbles per ton of glass results in 10% rejection rate of the final product, and for new products such as High Definition Television, the quality standards are even more stringent.
- For automobile glass, the most demanding specification requires that gas bubbles be less than 0.5 mm in diameter for transparency purposes.
- Moreover, for windshield glass, reducing by half the defect density would increase the profitability by more than 2 millions dollars per year.
- Consequently, understanding the behavior of gases and bubbles in the glass melt and its identification of sources ,a systematic approach to resolve are of great interest to the glass industry, both from a technological and an economical viewpoints.


Reference: "Bubble transport in three-dimensional laminar gravity-driven flow – mathematical formulation"

AN APPROACH TO RESOLVE AMBER STREAK IN GLASS BOTTLES

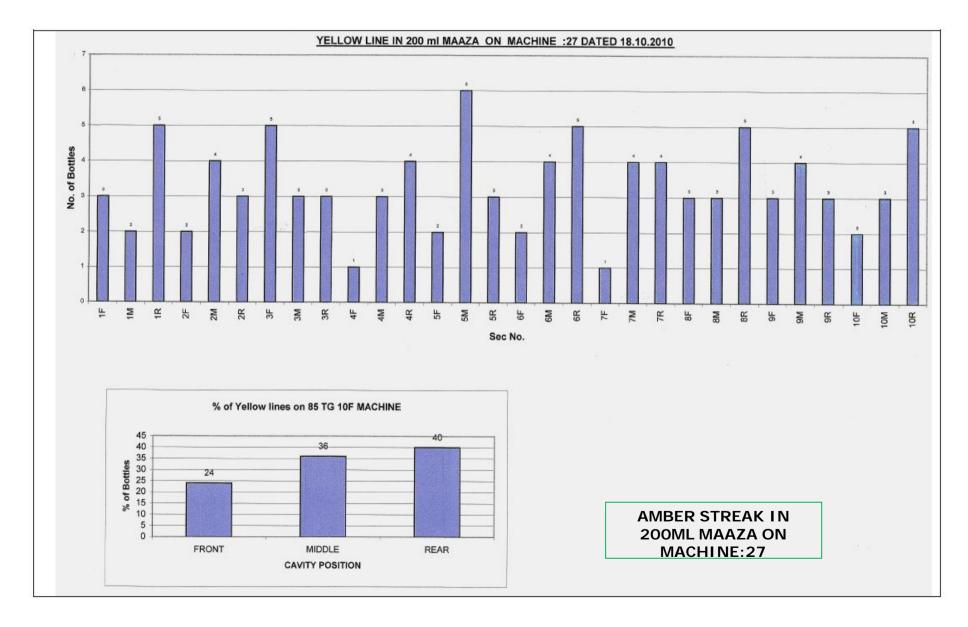
✤ Case Study: First occurrence.


- In Hyderabad factory in flint glass furnace line No.27, amber streak problem was noticed for 15 days intermittently in Oct-2010.
- 2. This fore hearth is located close to the throat.
- 3. Fore hearth No.27 was drawing 68tpd.
- 4. The problem was not appearing in other fore hearths.
- 5. The amber streak didn't show any seeds at the edge.


AN APPROACH TO RESOLVE AMBER STREAK IN GLASS BOTTLES

An end-fired regenerative deep refiner furnace:

OUT LINE OF FURNACE AND FOREHEARTH / FEEDERS



FURNACE BOOSTER ELECTRODES BLOCKS AND THERMOCOUPLES BLOCKS POSITIONING LAYOUT

AMBER STREAK IN 200ML MAAZA ON MACHINE:27

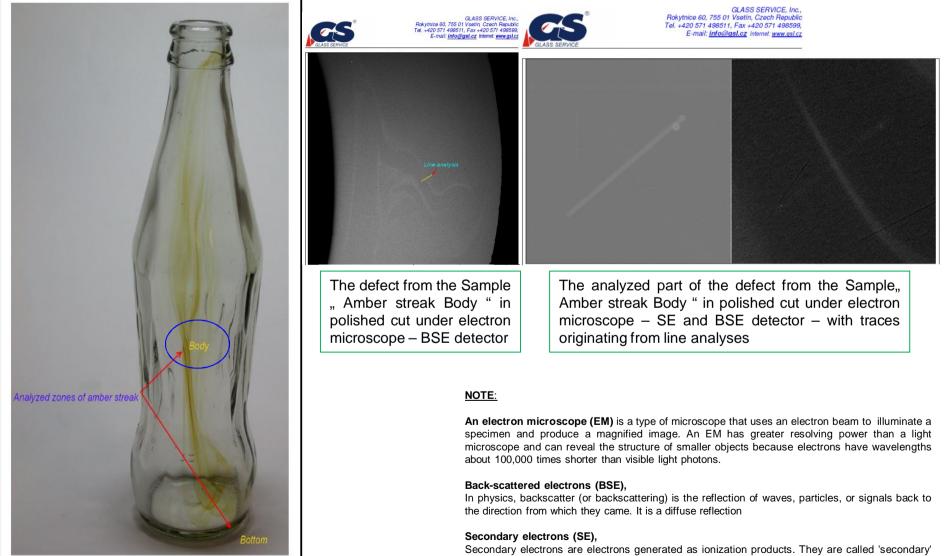
CORRECTIVE ACTION TAKEN

Having assumed some foreign material was lying inside the fore-hearth no:27, at first, we did heavy draining of glass of that particular fore-hearth several times: though it offered a temporary relief but problem resumed soon afterwards.

We also investigated the entire fore -hearths and working end area especially line 27fore-hearth gas heating system as well as the radiation cooling damper area and found no abnormality.

Presuming that amber streak was generated due to some foreign materials contact with the glass in fore hearth / working end. This assumption was based on the fact that sometimes when there was variation in the draw pattern on line 27, Amber streak were observed on fore hearths location on both sides of line27 i.e. fore-heatrth26 and fore -hearth 28. these Amber streaks occurred on these fore hearth for very short duration varying from about half an hour to two hours and subsequently it disappeared when the flow of glass in line27 restored to normal level.

We therefore provided a cooling arrangement at the bottom of the working end and close to the line 27 connection block 27.10.2010. The of on size the wind box was 2150mm(length)x850mm(width)x330mm depth extending equally on either side of the fore- hearth 27. Subsequent to this, we had noticed considerable reduction of almost 95% Amber steaks, and we were continuing the same cooling arrangement. However, we did keep noticing Amber streaks on the adjacent lines periodically for about one hour or two hours once in two days or so.


On 18.11.2010 we started throat boosting on continuous basis. After few days Amber streak problem gradually disappeared.

NOTE:

- Energy-dispersive X-ray spectroscopy (EDS, EDX, or XEDS) is an analytical technique used for the elemental analysis or chemical characterization of a sample. It relies on the investigation of an interaction of some source of X-ray excitation and a sample.
- The stereo or stereoscopic or dissecting microscope is an optical microscope variant designed for low magnification observation of a sample, typically using light reflected from the surface of an object rather than transmitted through it.

Secondary electrons are electrons generated as ionization products. They are called 'secondary' because they are generated by other radiation (the primary radiation). This radiation can be in the form of ions, electrons, or photons with sufficiently high energy,

Results of presence of Ca and of Al in marked area from the Sample Amber streak Body

GLASS SERVICE, Inc., Rokytnice 60, 755 01 Vsetin, Czech Republic Tel. +420 571 498511, Fax +420 571 498599, E-mail: info@gsl.cz Internet: www.gsl.cz

« Sample " Amber streak Body »

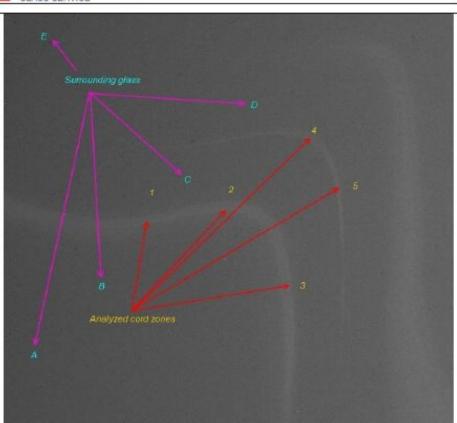
Analysis line 1-10-22

Elt	XRay	Int	Error	W%	A%	Formula	Ox%
0				45.07	59.19		0.00
Na	Ka	148.1	12.1695	9.33	8.53	Na2O	12.58
Mg	Ka	10.6	3.2511	0.52	0.45	MgO	0.86
Aľ	Ka	24.6	4.9577	0.96	0.75	AI2O3	1.82
Si	Ka	1025.3	32.0199	35.49	26.55	SiO2	75.93
к	Ka	18.5	4.2969	0.90	0.48	K20	1.08
Ca	Ka	152.0	12.3282	7.72	4.05	Ca0	7.72
Σ	0.02			100.00	100.00		100.00

« Sample ", Amber streak Body »

Analysis line 1-10-27

Meas	ures & R	esults	-					
Elt	XRay	Int	Error	W%	A%	Formula	Ox%	
0	1.1	-0402044	19000000000	45.45	59.37	000703-000	0.00	
Na	Ka	154.3	12.4202	9.73	8.85	Na2O	13.12	
Mg	Ka	7.4	2.7267	0.37	0.32	MgO	0.61	
AI	Ka	42.7	6.5359	1.69	1.31	AI203	3.19	
Si	Ka	1001.7	31.6495	35.23	26.22	SiO2	75.37	
K	Ka	17.9	4.2343	0.88	0.47	K2O	1.06	
Ca	Ka	129.8	11.3921	6.65	3.47	Ca0	6.65	
Σ	100000	01000000	1000.000000	100.00	100.00	141203014	100.00	


GLASS SERVICE, Inc., Rokytnice 60, 755 01 Vsetin, Czech Republic Tel. +420 571 498511, Fax +420 571 498599, E-mail: info@gsl.cz Internet: www.gsl.cz

GLASS SERVICE, Inc., Rokytnice 60, 755 01 Vsetin, Czech Republic Tel. +420 571 498599, E-mail: <u>info@gsl.cz</u> Internet: <u>www.gsl.cz</u>

« Sample " Amber streak Body »

Analyzed cord zones

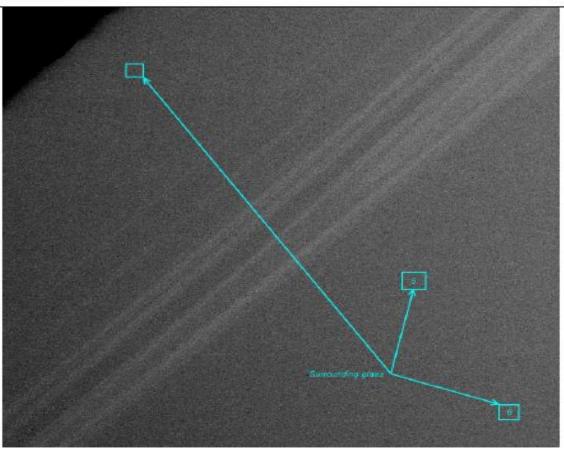
The analyzed part of the defect from the Sample " Amber streak Body " in polished cut under electron microscope – BSE detector – with marks of analyzed zones

Elt	XRay	Int	Error	W%	A%	Formula	Ox%
0				45.38	59.32		0.00
Na	Ka	176.8	13.2959	9.75	8.87	Na2O	13.14
Mg	Ka	9.4	3.0688	0.41	0.35	MgO	0.68
AI	Ka	47.3	6.8769	1.63	1.27	AI2O3	3.09
Si	Ka	1145.2	33.8410	35.20	26.21	SiO2	75.29
ĸ	Ka	19.1	4.3723	0.82	0.44	K20	0.99
Ca	Ka	152.1	12.3348	6.81	3.55	Ca0	6.81
Σ				100.00	100.00		100.00
2 Me	asures &	Results					
Elt	XRay	Int	Error	W%	A%	Formula	Ox%
0	10000			45.61	59.48		0.00
Na	Ka	179.3	13.3901	9.87	8.95	Na2O	13.30
Mg	Ka	6.4	2.5282	0.28	0.24	MgO	0.46
AI	Ka	46.8	6.8432	1.62	1.25	AI2O3	3.05
Si	Ka	1156.2	34.0029	35.48	26.35	SiO2	75.90
к	Ka	16.0	4.0014	0.69	0.37	K2O	0.83
Ca	Ka	144.5	12.0189	6.46	3.36	Ca0	6.46
Σ				100.00	100.00		100.00
3, Me	asures &	Results					
Elt	XRay	Int	Error	W%	A%	Formula	Ox%
0				45.31	59.22		0.00
Na	Ka	184.2	13.5738	9.90	9.01	Na2O	13.35
Mg	Ka	12.1	3.4834	0.52	0.44	MgO	0.86
AI	Ka	49.0	7.0031	1.66	1.29	AI203	3.13
Si	Ka	1165.0	34.1321	35.02	26.07	SiO2	74.92
ĸ	Ka	17.5	4.1824	0.73	0.39	K20	0.88
Ca	Ka	157.1	12.5356	6.86	3.58	Ca0	6.86
Σ				100.00	100.00		100.00

GLASS SERVICE, Inc., Rokytnice 60, 755 01 Vsetin, Czech Republic Tel. +420 571 498591, Fax +420 571 498599, E-mail: <u>info@gsl.cz</u> Intemet: <u>www.gsl.cz</u>

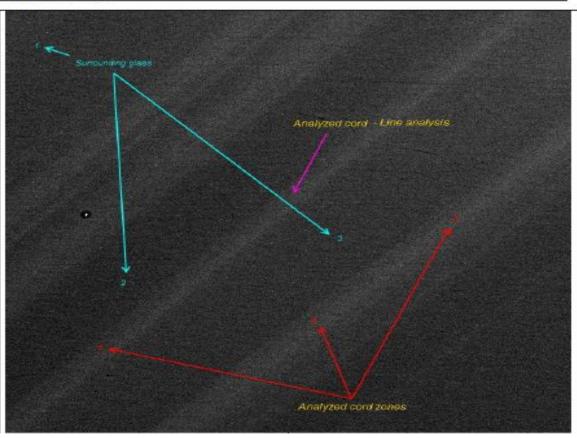
« Sample " Amber streak Body »

Analyzed cord zones


Elt	XRay	Int	Error	W%	A%	Formula	Ox%
0			~	45.21	59.18		0.00
Na	Ka	186.7	13.6641	10.00	9.11	Na2O	13.48
Mg	Ka	8.7	2.9505	0.37	0.32	MgO	0.61
AL	Ka	51.1	7.1493	1.72	1.33	AI2O3	3.24
Si	Ka	1167.2	34.1648	34.85	25.99	SiO2	74.56
к	Ka	18.8	4.3412	0.78	0.42	K2O	0.94
Ca	Ka	155.8	12,4828	6.74	3.52	Ca0	6.74
Fe	Ka	3.6	1.9023	0.32	0.12	FeO	0.41
Σ				100.00	100.00		100.00

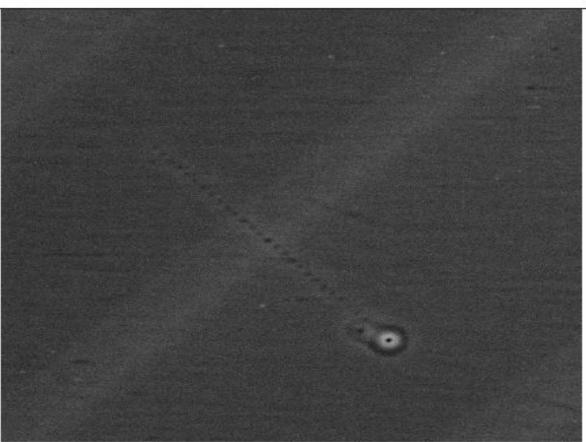
Elt	XRay	Int	Error	W%	A%	Formula	Ox%
0				45.21	59,16		0.00
Na	Ka	186.7	13.6635	10.07	9.17	Na2O	13.58
Ma	Ka	9.0	2.9966	0.38	0.33	MgO	0.64
AI	Ka	49.8	7.0583	1.69	1.31	AI203	3.19
Si	Ka	1156.2	34.0029	34.83	25.96	SiO2	74.50
ĸ	Ka	22.7	4.7693	0.95	0.51	K2O	1,15
Ca	Ka	151.1	12.2913	6.60	3.45	Ca0	6.60
Fe	Ka	3.0	1.7291	0.27	0.10	FeO	0.34
Σ.	1000			100.00	100.00		100.00

GLASS SERVICE, Inc., Rokytnice 60, 755 01 Vsetin, Czech Republic Tel. +420 571 498511, Fax +420 571 498599, E-mail: info@gsl.cz Internet: www.gsl.cz

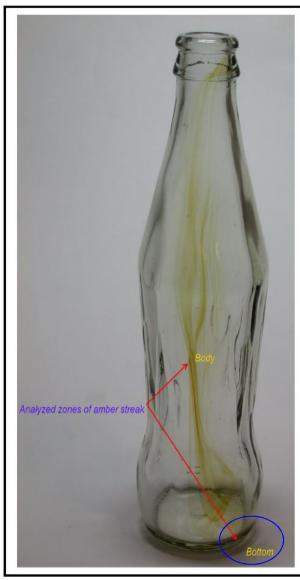


The defect from the Sample " Amber streak Body " in polished cut under electron microscope – BSE detector

GLASS SERVICE, Inc., Rokytnice 60, 755 01 Vsetin, Czech Republic Tel. +420 571 498511, Fax +420 571 498599, E-mail: info@gsl.cz Internet: www.gsl.cz

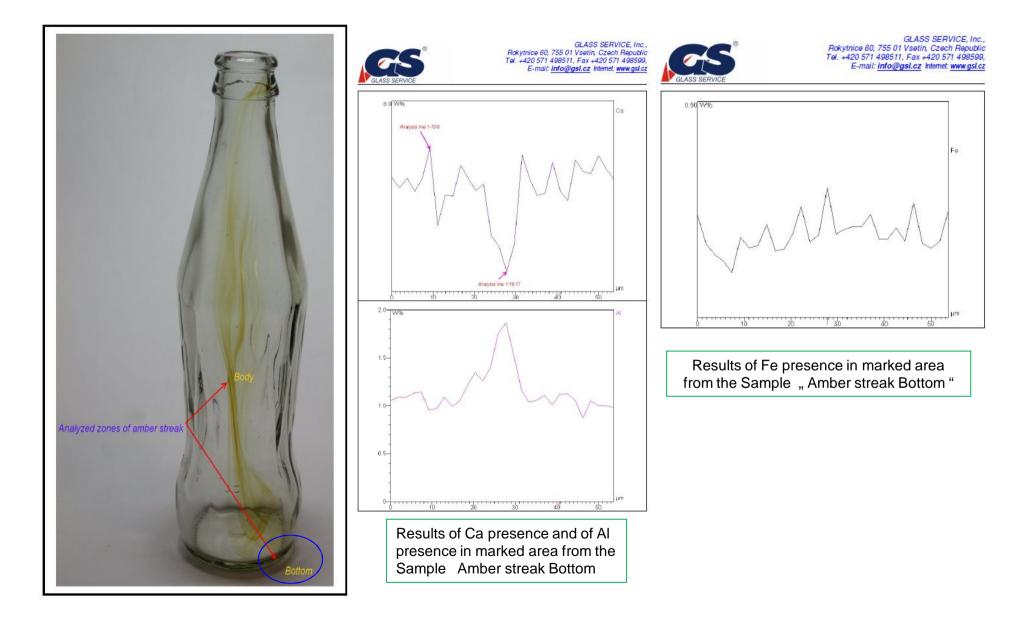


The defect from the Sample " Amber streak Body " in polished cut under electron microscope – BSE detector – with marks of analyzed zones



GLASS SERVICE, Inc., Rokytnice 60, 755 01 Vsetin, Czech Republic Tel. +420 571 498511, Fax +420 571 498599, E-mail: <u>info@gsl.cz</u> Internet: <u>www.gsl.cz</u>

The analyzed part of the defect from the Sample " Amber streak Body " in polished cut under electron microscope – BSE detector – with traces originating from line analyses



The defect from the Sample "Amber streak Bottom " in polished cross section in passing through light

The detail of the defect from the Sample " Amber streak Bottom " in polished cut in passing through polarized light between crosses polars with interference wafer of the first order

GLASS SERVICE, Inc.

GLASS SERVICE, Inc., Rokytnice 60, 755 01 Vsetin, Czech Republic Tel. +420 571 498511, Fax +420 571 498599, E-mail: info@gsl.cz Internet: www.gsl.cz

.

"Amber streak Body » « Sample

Analysis line 1-10-6

GLASS SERVICE, Inc., Rokytnice 60, 755 01 Vsetin, Czech Republic Tel. +420 571 498511, Fax +420 571 498599, E-mail: info@gsl.cz Internet: www.gsl.cz

« Sample " Amber streak Bottom »

Analyzed cord zones

C 14	VD	1111	100 million (100 million)	1410/	8.07	Contraction of the	0.0
Elt	XRay	Int	Error	W%	A%	Formula	Ox%
0				45.00	59.13		0.00
Na	Ka	192.8	13.8866	9.56	8.74	Na2O	12.89
Mg	Ka	11.4	3.3711	0.44	0.38	MgO	0.73
AI	Ka	31.0	5.5692	0.96	0.75	AI2O3	1.81
Si	Ka	1299.5	36.0481	35.38	26.48	SiO2	75.69
K	Ka	22.2	4.7081	0.85	0.45	K2O	1.02
Ca	Ka	191.3	13.8310	7.63	4.00	Ca0	7.63
Fe	Ka	2.3	1.5028	0.18	0.07	FeO	0.24
Σ	12			100.00	100.00		100.00

« Sample " Amber streak Bottom »

Analysis line 1-10-16

Meas	sures & R	esults					
Elt	XRay	Int	Error	W%	A%	Formula	Ox%
0	1			45.35	59.36		0.00

Ка			15.05			
Ko			45.35	59.36		0.00
r\ci	196.0	14.0011	9.46	8.61	Na2O	12.75
Ka	13.4	3.6618	0.51	0.44	MgO	0.84
Ka	62.1	7.8805	1.87	1.45	AI2O3	3.53
Ka	1301.6	36.0782	34.92	26.04	SiO2	74.71
Ka	24.9	4.9870	0.93	0.50	K20	1.12
Ka	171.1	13.0805	6.66	3.48	Ca0	6.66
Ka	3.8	1.9392	0.30	0.11	FeO	0.39
603 1 1			100.00	100.00		100.00
	Ka Ka Ka	Ka 62.1 Ka 1301.6 Ka 24.9 Ka 171.1	Ka 62.1 7.8805 Ka 1301.6 36.0782 Ka 24.9 4.9870 Ka 171.1 13.0805	Ka 62.1 7.8805 1.87 Ka 1301.6 36.0782 34.92 Ka 24.9 4.9870 0.93 Ka 171.1 13.0805 6.66 Ka 3.8 1.9392 0.30	Ka 62.1 7.8805 1.87 1.45 Ka 1301.6 36.0782 34.92 26.04 Ka 24.9 4.9870 0.93 0.50 Ka 171.1 13.0805 6.66 3.49 Ka 3.8 1.9392 0.30 0.11	Ka 62.1 7.8805 1.87 1.45 Al2O3 Ka 1301.6 36.0782 34.92 26.04 SiO2 Ka 24.9 4.9870 0.93 0.50 K2O Ka 171.1 13.0805 6.66 3.49 Ca0 Ka 3.8 1.9392 0.30 0.11 FeO

1. Measures & Results

Elt	XRay	Int	Error	W%	A%	Formula	Ox%	
0			Conservation of the	45.18	59.10	and a second	0.00	
Na	Ka	206.2	14.3581	10.37	9.44	Na2O	13.98	
Mg	Ka	6.1	2.4677	0.24	0.21	MgO	0.41	
AL	Ka	56.0	7.4812	1.77	1.38	AI2O3	3.35	
Si	Ka	1233.7	35.1244	34.74	25.89	SiO2	74.32	
K	Ka	19.8	4,4510	0.77	0.41	K2O	0.93	
Ca	Ka	161.8	12,7183	6.59	3.44	Ca0	6.59	
Fe	Ka	3.9	1.9718	0.32	0.12	FeO	0.42	
	1000			100.00	100.00		100.00	

2. Measures & Results

Elt	XRay	Int	Error	W%	A%	Formula	Ox%	
0	1.1.1.1	and a state of the	Sec	45.28	59.21	Same and the second	0.00	
Na	Ka	207.5	14.4048	10.00	9.10	Na2O	13.48	
Mg	Ka	12.9	3.5882	0.49	0.42	MgO	0.82	
AL	Ka	58.0	7.6140	1.76	1.36	AI203	3.32	
Si	Ka	1291.5	35.9380	34.81	25.93	SiO2	74.47	
K	Ka	23.2	4.8125	0.87	0.46	K2O	1.04	
Ca	Ka	167.1	12.9267	6.52	3.40	Ca0	6.52	
Fe	Ka	3.4	1.8351	0.27	0.10	FeO	0.35	
Σ				100.00	100.00		100.00	

3. Measures & Results

Elt	XRay	Int	Error	W%	A%	Formula	Ox%
0		and the second s	S. A. Carrows	45.28	59.18	a daria	0.00
Na	Ka	206.0	14.3518	10.01	9.10	Na2O	13.49
Mg	Ka	16.8	4.0936	0.65	0.56	MgO	1.07
AI	Ka	61.0	7.8124	1.87	1.45	AI2O3	3.54
Si	Ka	1269.5	35.6301	34.64	25.79	SiO2	74.11
K	Ka	23.5	4.8447	0.89	0.47	K2O	1.07
Ca	Ka	163.5	12.7884	6.45	3.36	Ca0	6.45
Fe	Ka	2.6	1.6241	0.21	0.08	FeO	0.27
Σ	4. 2		30	100.00	100.00	82	100.00

GLASS SERVICE, Inc., Rokytnice 60, 755 01 Vsetin, Czech Republic Tel. +420 571 498511, Fax +420 571 498599, E-mail: info@gsl.cz Internet: www.gsl.cz

.. Amber streak Bottom » « Sample

Surrounding glass

GLASS SERVICE, Inc., Rokytnice 60, 755 01 Vsetin, Czech Republic Tel. +420 571 498511, Fax +420 571 498599, E-mail: info@gsl.cz Internet: www.gsl.cz

0.00

13.81

0.88

2.06

74.76

1.01

7.26

0.22

100.00

« Sample Amber streak Bottom »

Surrounding glass - Average composition of the blue marked zone

1. Measures & Results

Elt	XRay	Int	Error	W%	A%	Formula	Ox%
0	1.0	ablan	in Electronic	44.96	58.97	Arrist Sec.	0.00
Na	Ka	206.7	14.3775	10.08	9.20	Na2O	13.59
Mg	Ka	14.9	3.8555	0.58	0.50	MgO	0.95
AI	Ka	34.2	5.8511	1.05	0.82	AI2O3	1.99
Si	Ka	1294.9	35.9854	35.05	26.19	SiO2	74.98
K	Ka	21.7	4.6544	0.82	0.44	K2O	0.99
Ca	Ka	185.7	13.6285	7.32	3.83	Ca0	7.32
Fe	Ka	1.7	1.2985	0.14	0.05	FeO	0.18
Σ	-			100.00	100.00		100.00

2. Measures & Results

Elt	XRay	Int	Error	W%	A%	Formula	Ox%
0	1	14		45.01	59.05		0.00
Na	Ka	203.9	14.2777	10.02	9.14	Na2O	13.50
Mg	Ka	12.0	3.4698	0.47	0.40	MgO	0.78
AI	Ka	30.6	5.5290	0.94	0.73	AI2O3	1.78
Si	Ka	1298.2	36.0305	35.25	26.34	SiO2	75.41
К	Ka	21.0	4.5785	0.80	0.43	K2O	0.96
Ca	Ka	184.5	13.5829	7.32	3.83	Ca0	7.32
Fe	Ka	2.4	1.5625	0.20	0.07	FeO	0.26
	0.000			100.00	100.00		100.00
	asures &	Results	10 I	100.00			
3. Me Elt	asures & XRay	Results Int	Error	W%	A%	Formula	Ox%
3. Me Elt	00.00030020	negrosco da Sala	Error			Formula	•
3, Me Elt O Na	XRay Ka	Int 203.4	14.2623	W% 44.87 9.84	A% 58.95 9.00	Na2O	Ox% 0.00 13.27
3, Me Elt O Na	XRay	Int		W% 44.87 9.84 0.68	A% 58.95 9.00 0.58		Ox%
3, Me Elt O Na Mg	XRay Ka	Int 203.4	14.2623	W% 44.87 9.84	A% 58.95 9.00	Na2O	Ox% 0.00 13.27
Σ 3. Me Elt O Na Mg Al Si	XRay Ka Ka	Int 203.4 17.7	14.2623 4.2033	W% 44.87 9.84 0.68	A% 58.95 9.00 0.58	Na2O MgO	Ox% 0.00 13.27 1.12
3. Me O Na Mg Al Si	XRay Ka Ka Ka	Int 203.4 17.7 35.8	14.2623 4.2033 5.9835	W% 44.87 9.84 0.68 1.09	A% 58.95 9.00 0.58 0.85	Na2O MgO Al2O3	Ox% 0.00 13.27 1.12 2.06
3. Me O Na Mg Al Si K	XRay Ka Ka Ka Ka	Int 203.4 17.7 35.8 1303.6	14.2623 4.2033 5.9835 36.1049	W% 44.87 9.84 0.68 1.09 34.91	A% 58.95 9.00 0.58 0.85 26.13	Na2O MgO Al2O3 SiO2	Ox% 0.00 13.27 1.12 2.06 74.67
3. Me El O Na Mg Al	XRay Ka Ka Ka Ka Ka	Int 203.4 17.7 35.8 1303.6 24.6	14.2623 4.2033 5.9835 36.1049 4.9608	W% 44.87 9.84 0.68 1.09 34.91 0.92	A% 58.95 9.00 0.58 0.85 26.13 0.49	Na2O MgO Al2O3 SiO2 K2O	Ox% 0.00 13.27 1.12 2.06 74.67 1.11

4 Measures & Results

Elt	XRay	Int	Error	W%	A%	Formula	Ox%
0		2-033053		44.95	58,93	4.9421-4.94 (2)	0.00
Na	Ka	211.5	14.5414	10.31	9.40	Na2O	13.89
Mg	Ka	14.4	3.7903	0.56	0.48	MaO	0.92
AI	Ka	34.7	5.8938	1.07	0.83	AI2O3	2.02
Si	Ka	1289.0	35.9027	34.95	26.10	SiO2	74.77
к	Ka	22.8	4,7788	0.86	0.46	K2O	1.04
Ca	Ka	180.6	13,4375	7.12	3.73	Ca0	7.12
Fe	Ka	2.1	1.4660	0.17	0.07	FeO	0.22
Σ				100.00	100.00		100.00

5. Measures & Results

Elt	XRay	Int	Error	W%	A%	Formula	Ox%	
0	1.00		54	44.87	58.90	2 - S	0.00	
Na	Ka	210.8	14.5180	10.19	9.31	Na2O	13.73	
Mg	Ka	13.6	3.6944	0.52	0.45	MgO	0.87	
Aľ	Ka	33.9	5.8239	1.03	0.80	AI2O3	1.95	
Si	Ka	1303.8	36.1077	34.95	26.13	SiO2	74.77	
K	Ka	24.6	4,9549	0.92	0.49	K2O	1.11	
Ca	Ka	187.2	13.6816	7.31	3.83	Ca0	7.31	
Fe	Ka	2.6	1.6011	0.21	0.08	FeO	0.26	
Σ	100000			100.00	100.00		100.00	

6. Measures & Results Elt XRay Int Error W% A% Formula Ox% 58,92 0 44.92 Na 212.5 14.5758 10.25 9.35 Na2O Ka 3.7129 13.8 Mg Ka 0.53 0.46 MgO AI Ka 35.9 5.9890 1.09 0.85 AI2O3 Si 1303.8 SiO2 Ka 36.1076 34.95 26.11 K 22.3 K20 Ka 4.7268 0.83 0.45 Ca Fe Ka 186.2 13.6462 7.26 3.80 Ca0 0.17 FeO Ka 2.1 1.4528 0.06

100.00

100.00

The explicit account of the presence of this defect in glass is very difficult. Our SEM-EDX microanalysis not given account of the problem of coloration of the defect (amounts of iron and of other possible coloring agents are rather under area of detection limit), nevertheless this colored streak has had increased content of Al2O3 with simultaneous decreased content of CaO against the surrounding glass.

The flowing of corrosion products from Aluminosilicate/Alumina refractory caused the rise of this defect.

We estimate that this material is applied rather at zone of glass feeding – plunger/rotation tube/bowl. The coloration of the defect could be caused by its contamination by lubricants used in this zone

NOTE:

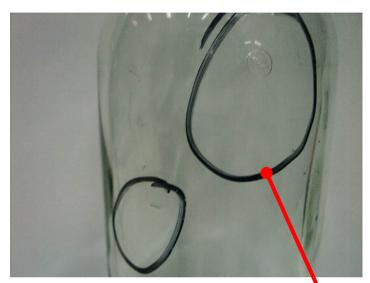
SEM-EDX michroanalysis ; Scanning Electron Michroscopy with Energy Dispersive Xray spectroscopy

There might be some foreign materials (alumina silicate refractory pieces contaminated with lubricants) was lying near working end entrance and fore hearth 27 entrance causing this amber streak problem.

AN APPROACH TO RESOLVE AMBER STREAK AND BUBBLES IN GLASS BOTTLES

Case Study: Second occurrence

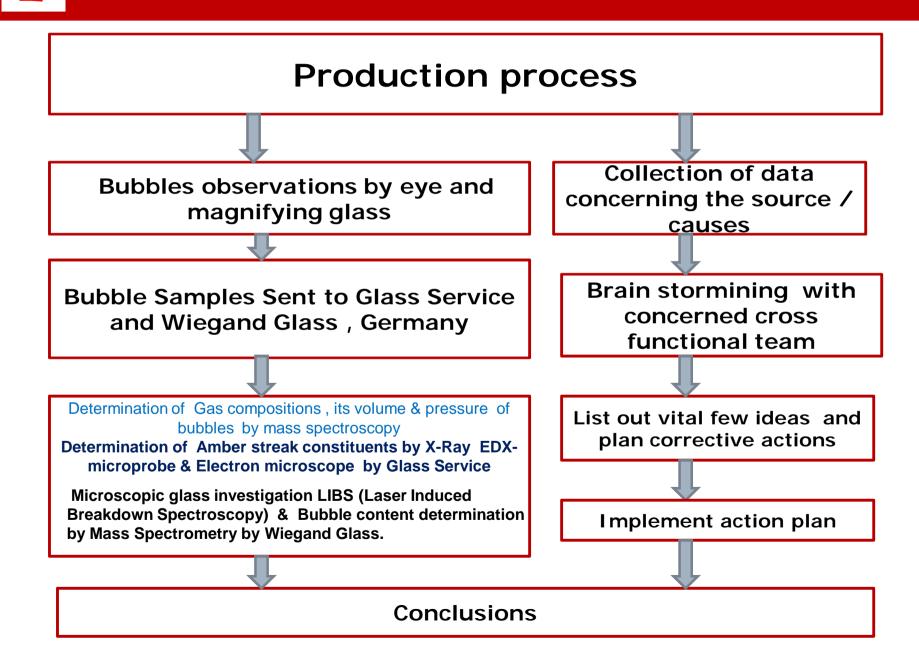
- 1. In Hyderabad factory in flint glass furnace amber streak and bubbles problems were noticed intermittently since June 2013.
- 2. These problems were occurring mostly in Fore- hearth 27 which was the closest fore-hearth to the throat raiser and some times in the adjacent line of 28. Occurrence of the defects are causing sever loss of production.
- 3. Bubbles were having a typical pattern in a bottle.
- 4. Occurrence of Bubbles and amber streak were either pre or post consecutive to each other.
- 5. Whenever bubbles (and amber streak) problems occurred, we carried out heavy glass draining of that particular forehearth though this draining process offered some temporary relief, but problem occurred soon after.



SAMPLES OF BUBBLES AND AMBER STREAK

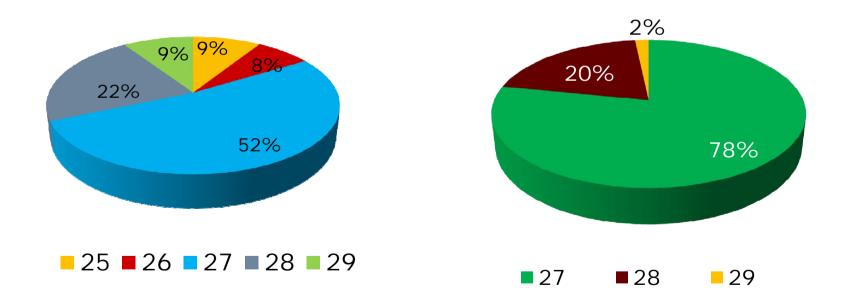
Bubble -1

Bubble-2



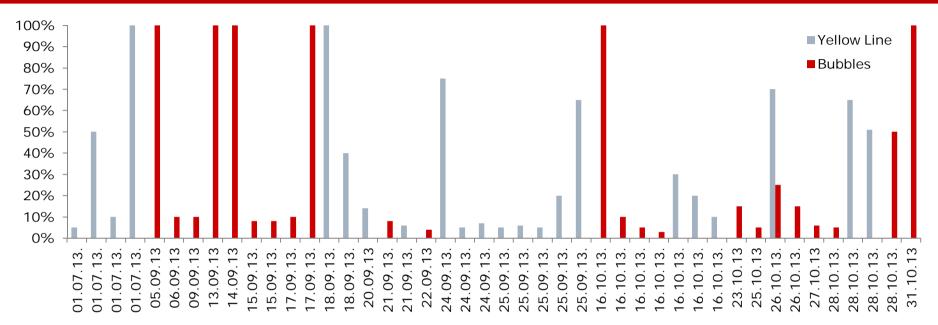
Amber streak

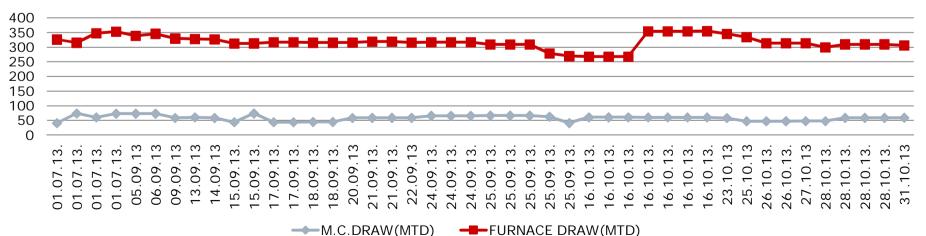
AN APPROACH TO RESOLVE AMBER STREAK AND BUBBLES IN GLASS BOTTLES



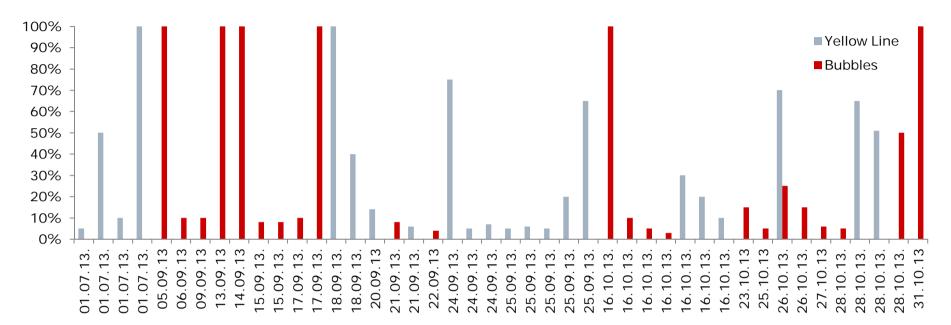
IDENTIFICATION OF MOST PROBLEM PRONE MACHINES IN TERMS OF AMBER STREAK& BUBBLES(JUNE-13 ~ OCT-13)

M/C WISE CONTRIBUTION % OF YELLOW LINE

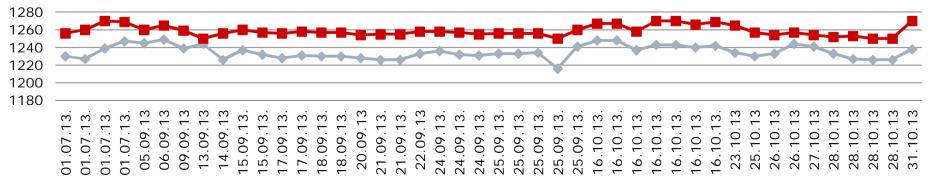

M/C WISE CONTRIBUTION % OF BUBBLES


CALCULATION BASED ON OCCURANCES OF AMBER STREAK& BUBBLES IN ALL 5 MACHINES ON DAILY BASIS DURING JUNE-13 TO OCT-13

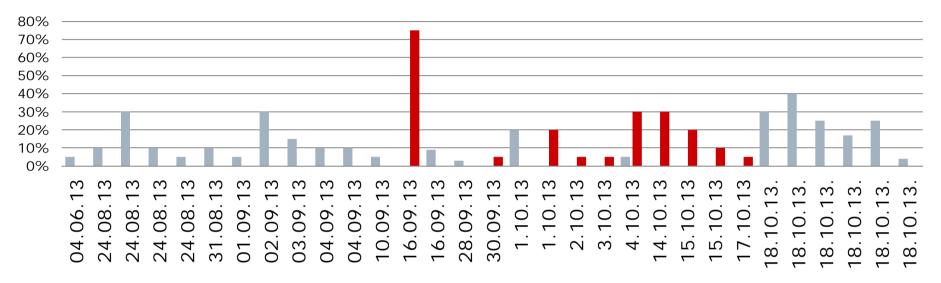
M/C -27 Amber streak Bubbles



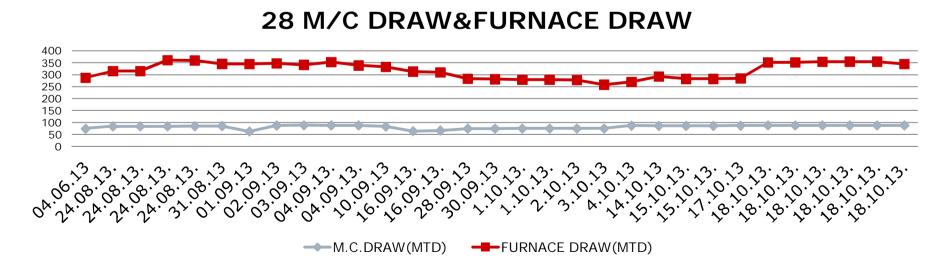
27 M/C DRAW & FURNACE DRAW



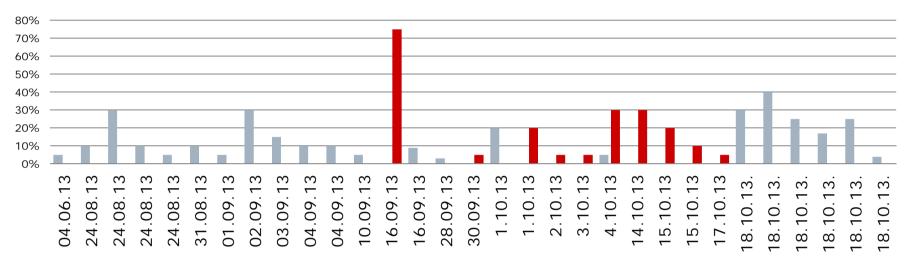
M/C -27 Amber streak and Bubbles



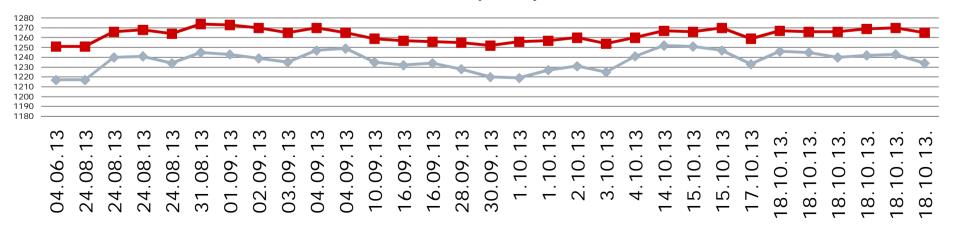
27 M/C FURNACE BOTTOM TEMP(T6)WORKING END(21)



M/C -28Amber streak and Bubbles



■ YELLOW LINE ■ BLISTERS



M/C -28Amber streak and Bubbles

■YELLOW LINE ■BLISTERS

28 M/C FURNACE BOTTOM TEMP(T6)&WORKING END(T21)

GLASS COMPOSITION BEFORE OCCURRENCE OF AMBER STREAK & BUBBLE

GLASS COMPOSITION DURING AMBER STREAK & BUBBLE

Data	0100	410.00	N-00	1/00	DAO	14-0	0-0	DO	600	F. 000
Date	SiO2	AI2O3	Na2O	K2O	R20	MgO	CaO	RO	SO3	Fe2O3
10-May-13	71.99	1.54	12.84	0.96	13.80	1.60	10.60	12.20	0.24	0.147
13-May-13	71.96	1.58	12.86	0.96	13.82	1.59	10.59	12.18	0.24	0.137
15-May-13	71.86	1.58	12.91	0.98	13.89	1.62	10.58	12.20	0.24	0.135
17-May-13	71.87	1.53	12.88	0.97	13.85	1.74	10.52	12.26	0.24	0.154
20-May-13	71.84	1.56	12.89	0.98	13.87	1.55	10.71	12.26	0.24	0.148
22-May-13	71.75	1.53	12.80	1.00	13.80	1.78	10.67	12.45	0.24	0.153
24-May-13	71.75	1.59	12.86	0.95	13.81	1.71	10.67	12.38	0.24	0.139
27-May-13	71.97	1.58	12.89	0.98	13.87	1.58	10.54	12.12	0.24	0.136
29-May-13	71.89	1.58	12.81	0.96	13.77	1.63	10.64	12.27	0.24	0.138
31-May-13	71.92	1.58	12.73	0.98	13.71	1.54	10.74	12.28	0.27	0.140
3-Jun-13	71.99	1.58	12.68	0.98	13.66	1.50	10.78	12.28	0.27	0.14
5-Jun-13	71.76	1.53	12.85	0.98	13.83	1.62	10.77	12.39	0.27	0.14
7-Jun-13	71.85	1.54	12.81	1.00	13.81	1.67	10.74	12.41	0.27	0.14
10-Jun-13	71.85	1.49	12.76	1.01	13.77	1.71	10.68	12.39	0.27	0.14
12-Jun-13	71.93	1.49	12.71	1.01	13.72	1.65	10.72	12.37	0.27	0.14
14-Jun-13	71.94	1.49	12.76	0.98	13.74	1.68	10.65	12.33	0.27	0.15
17-Jun-13	71.95	1.55	12.70	1.04	13.74	1.67	10.60	12.27	0.27	0.14
19-Jun-13	72.07	1.55	12.64	1.04	13.68	1.67	10.54	12.21	0.27	0.14
21-Jun-13	72.16	1.54	12.64	1.04	13.68	1.58	10.54	12.12	0.27	0.14
24-Jun-13	72.18	1.55	12.57	1.04	13.61	1.63	10.52	12.15	0.27	0.15
26-Jun-13	72.10	1.58	12.66	1.06	13.72	1.56	10.54	12.10	0.27	0.15
28-Jun-13	71.94	1.56	12.81	1.02	13.83	1.60	10.57	12.17	0.27	0.14
1-Jul-13	71.95	1.55	12.82	1.01	13.83	1.63	10.54	12.17	0.27	0.146
3-Jul-13	71.98	1.59	12.74	1.02	13.76	1.72	10.47	12.19	0.25	0.134
5-Jul-13	71.97	1.61	12.77	1.04	13.81	1.60	10.54	12.14	0.25	0.136
8-Jul-13	71.80	1.61	12.82	1.03	13.85	1.79	10.46	12.25	0.25	0.154
10-Jul-13	71.85	1.60	12.81	0.96	13.77	1.74	10.54	12.28	0.25	0.163
12-Jul-13	71.79	1.59	12.90	0.99	13.89	1.65	10.60	12.25	0.25	0.150
	71.64	1.57	12.93	1.01	13.94	1.72	10.65	12.37	0.25	0.139
17-Jul-13	71.72	1.60	12.94	1.00	13.94	1.62	10.66	12.28	0.25	0.125
		1.59	12.88	0.99	13.87	1.53	10.66	12.19	0.25	0.128
22-Jul-13	71.78	1.60	12.97	0.91	13.88	1.62	10.64	12.26	0.25	0.141
Min	71.64	1.49	12.57	0.91	13.61	1.50	10.46	12.10	0.24	0.125
Max	72.18	1.61	12.97	1.06	13.94	1.79	10.78	12.45	0.27	0.163
Avg	71.90	1.56	12.80	1.00	13.80	1.64	10.61	12.26	0.26	0.142

Date	SiO2	AI2O3	Na2O	K20	R20	MgO	CaO	RO	SO3	Fe2O3
24-Jun-13		1.55	12.57	1.04	13.61	1.63	10.52	12.15	0.27	0.151
28-Jun-13	71.94	1.56	12.81	1.02	13.83	1.60	10.57	12.17	0.27	0.143
1-Jul-13	71.95	1.55	12.82	1.01	13.83	1.63	10.54	12.17	0.27	0.146
23-Aug	71.86	1.66	12.81	0.98	13.79	1.79	10.50	12.29	0.24	0.152
25-Aug	71.96	1.69	12.73	0.95	13.68	1.72	10.54	12.26	0.24	0.150
28-Aug	71.96	1.64	12.8	0.98	13.78	1.57	10.64	12.21	0.22	0.165
30-Aug	71.95	1.64	12.87	0.9	13.77	1.58	10.66	12.24	0.22	0.159
2-Sep	72.09	1.62	12.77	0.93	13.70	1.52	10.66	12.18	0.22	0.170
4-Sep	71.98	1.61	12.79	0.93	13.72	1.66	10.61	12.27	0.22	0.167
6-Sep	71.99	1.58	12.93	0.91	13.84	1.56	10.65	12.21	0.17	0.166
9-Sep	71.74	1.59	13.01	0.91	13.92	1.79	10.59	12.38	0.17	0.158
11-Sep	71.87	1.51	12.94	0.89	13.83	1.81	10.62	12.43	0.17	0.161
13-Sep	71.88	1.53	12.99	0.86	13.85	1.77	10.61	12.38	0.17	0.162
16-Sep	71.82	1.56	13.00	0.87	13.87	1.57	10.81	12.38	0.17	0.157
18-Sep	71.82	1.56	12.98	0.87	13.85	1.57	10.84	12.41	0.17	0.158
20-Sep	71.95	1.54	12.95	0.90	13.85	1.49	10.81	12.30	0.18	0.156
23-Sep	71.99	1.53	12.95	0.88	13.83	1.45	10.84	12.29	0.18	0.156
25-Sep	72.02	1.54	12.87	0.88	13.75	1.45	10.87	12.32	0.18	0.156
27-Sep	72.01	1.53	12.86	0.86	13.72	1.53	10.85	12.38	0.18	0.156
30-Sep	72.08	1.53	12.83	0.87	13.70	1.51	10.83	12.34	0.18	0.159
	72.11	1.54	12.92	0.85	13.77	1.45	10.75	12.20	0.18	0.179
3-Oct	72.14	1.54	12.89	0.84	13.73	1.43	10.78	12.21	0.18	0.160
	72.00	1.53	12.87	0.87	13.74	1.53	10.80	12.33	0.18	0.162
11-Oct	71.98	1.50	12.99	0.85	13.84	1.44	10.86	12.30	0.18	0.164
15-Oct		1.51	13.00	0.85	13.85	1.57	10.86	12.43	0.18	0.164
17-Oct	71.86	1.50	13.06	0.84	13.90	1.56	10.81	12.37	0.19	0.161
19-Oct		1.49	12.96	0.85	13.81	1.51	10.86	12.37	0.19	0.158
21-Oct		1.48	12.93	0.85	13.78	1.53	10.83	12.36	0.19	0.152
22-Oct		1.56	12.93	0.87	13.8	1.6	10.66	12.26	0.19	0.150
25-Oct		1.58	13.05	0.88	13.93	1.6	10.64	12.24	0.18	0.158
28-Oct		1.51	13.05	0.81	13.86	1.51	10.81	12.32	0.17	0.153
30-Oct	72.07	1.51	13.05	0.8	13.85	1.5	10.73	12.23	0.17	0.152
Min	71.74	1.48	12.57	0.80	13.61	1.43	10.50	12.15	0.17	0.14
Max	72.18	1.69	13.06	1.04	13.93	1.81	10.87	12.43	0.27	0.18
Mean	71.97	1.56	12.91	0.89	13.80	1.58	10.72	12.29	0.20	0.16

Remarks:

Fe2O3% was increased during the period of occurrence of amber streak and bubbles

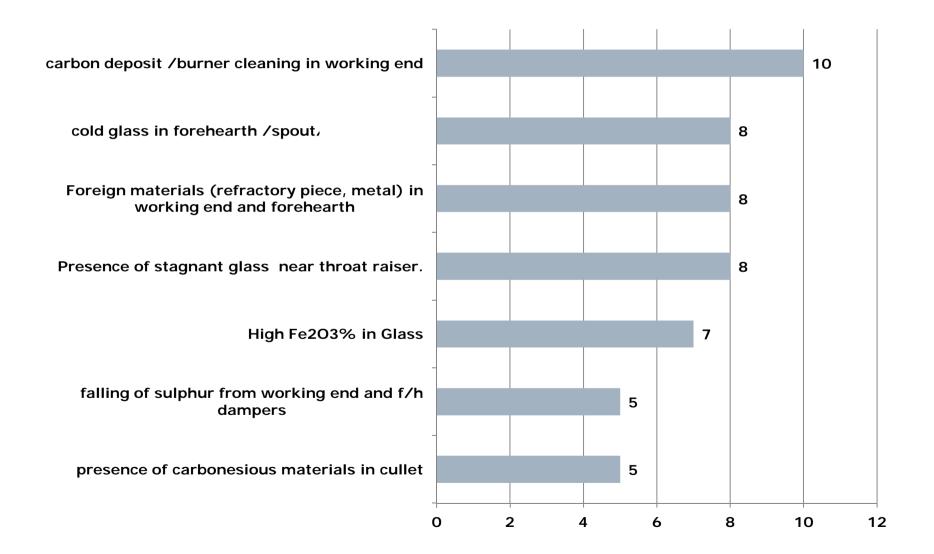
BRAINSTORMING ON PROBLEMS: FREQUENT OCCURANCE OF AMBER STREAK/BUBBLES IN M/C 27 & 28

S.No.	IDEAS	PROBABILITY (0 to 10SCALE)	REMARKS
1	Low/High Glass Level	0	FOUND OK (153mm)
2	Foreign materials (refractory piece, metal) in working end and fore hearth	8	FOUND PLUNGER PIECES ON 30.09.13 AND 16.10.13, FOUND WELDING ROD ON 23.10.13
3	Worn out running plunger	2	As per PM 20 DAYS before changed
4	Worn out running "O" ring	2	As per PM 10 DAYS before changed
5	Shear mechanism too close to orifice ring	2	As per PM not frequently changed
6	Plunger touching to orifice ring	0	not found
7	Too hot /Too cold blank or mould	0	It is not loading blister
8	Unusual refractory corrosion	0	not found
9	cold glass in forehearth /spout	8	found
10	Reboil in working end and forehearth	5	By appearance it does not looks like reboil blisters, but waiting for GLASS SERVICE REPORT
11	Inproper oxygen ratio in working end and forehearth	2	one week before checked and adjusted
12	carbon deposit /burner cleaning in working end	10	no schedule of cleaning As per PM It is need base

BRAINSTORMING ON PROBLEMS: FREQUENT OCCURANCE OF AMBER STREAK/BUBBLES IN M/C 27 & 28

_

S.No.	IDEAS	PROBABILITY (0 to 10SCALE)	REMARKS			
13	carbon deposit /burner cleaning in forehearth	3	6 months schedule available .Last cleaning done before 45 days			
14	Oil dropping in spout	2				
15	Temperature profile in working end and forehearth	5	Improper temperature profile creates reboil blisters .By appearance it does not looks like like reboil blister. Waiting for GLASS SERVICES REPORT			
16	in correct size of plunger /orifice ring	2	By appearance and intensity of blisters in bottle it does not looks like due to this reason			
17	Water leakages from batch charger ,water jacket of dog house	0	not found			
18	Dripping from working end drown	0	Slight dripping visible near chimney of working end raiser BUT not touching glass			
19	Leakage of indirect cooling air into forehearths	0	not found (Cooling blower not running)			
20	peeling off f/h-27 refractory channel	0	not observed			
21	falling of sulphur from working end and f/h dampers	5	some deposits are visible .tobe cleaned in next job change			
22	E xcess fines in raw materials	0	not found			
23	e xcess fines in cullet	4	occassionally found			
24	presence of carbonaceous materials in cullet	5	some times found			
25	Damaged spout	0	not found			



BRAINSTORMING ON PROBLEMS: FREQUENT OCCURANCE OF AMBER STREAK/BUBBLES IN M/C 27 & 28

S.No.	IDEAS	PROBABILITY (0 to 10SCALE)	REMARKS		
26	leakage between orifice ring and spout	0	not found		
27	Glass level touches skimmer block	0	not found		
28	NO,of times glasslevel checking in f/h by steel rod	0	not found		
29	Booster water leakage	0	not found		
30	RAISER thermocouple earthing	0	not found (no error reading)		
31	Unmelted /un refined glass from melting	0	Not found (since seed level is normal)		
32	Batch sagregation	0	Not found (since seed level is normal)		
33	low melting temperature	0	Not found (since seed level is normal)		
34	Throat area extra water cooling	0	no water cooling		
35	LUMP in fine chemicals	0	Not found (since seed level is normal)		
36	Redox change in melter	5	Since some times excess carbonesious materials found in cullet		
37	closing of working end chimney completely	0	found open		
38	Dust falling from EOT crane over head of f/h	3	during operation by PM		
39	improper spout firing	2			
40	High Fe2O3% in Glass	7	Very high Fe2O3%rich glass at bottom might be come in contact with mainstream glass causing these sort of problem.		
41	Leakage of Compressed air into glass bath from W.E and Forehearths walls since the origin of bubbling seems to be at Working End entrance(near Raiser).	2	Checked and found no blower/compressed line there		
42	Presence of stagnant glass near throat raiser.	8	This is the assumption because there is simultaneous		

LIST OF VITAL FEW IDEAS (=,>5 SCALE)

S.NO	SOURCES/POSSIBLES REASONS	CORRECTIVE ACTION PLANS	DATE OF COMPLETION	RESPONSIBILTY	
	Carbon deposit / burner cleaning in working end		. 5	Prodn. Maintenance	
2	Cold glass in forehearth / spout		5	Prodn. Maintenance	
	Foreign materials (refractory piece, metal) in working end and fore hearth	J	Immediate & on going	Glass Deptt	
4	Presence of stagnant glass near throat raiser.		Implemented from 4 th Nov-13	Glass Deptt	
5	High Fe2O3% in Glass	To reduce Fe2O3% in Glass by doing batch / Raw materials adjustment	Implemented from 4 th Nov-13	Glass Deptt	
0	Falling of sulphur from W.E and FHT dampers	nampers during the lon change	Implemented on 5th Nov-13	Glass Deptt & Prodn Maint.	
	Presence of carbonaceous materials in External cullet	5	Immediate & on going	Glass Deptt.	

GLASS SERVICE, Inc., Rokytnice 60, 755 01 Vsetín, Czech Republic Tel. +420 571 498511, Fax +420 571 498599, E-mail: <u>info@gsl.cz</u> Internet: <u>www.gsl.cz</u>

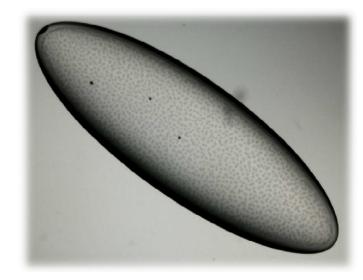
BUBBLE GAS ANALYSIS

Sample: Clear Glass Bottles

Data file: agi 38863 - 38868	
------------------------------	--

Sample	Dime	ension	[mm]	D.EQ.	Volume	р	Gas	Gas composition [vol. %]					Note				
ID	а	b	с	[mm]	[ml]	[kPa]	N ₂	CO ₂	O2	Ar	SO ₂	H ₂ S	COS	CO	CH ₄	H ₂	
1	3,20	1,00	0,13	0,75	2,18E-04	6,0	0,3	5,2			94,5						Deposits
3	2,80	0,60	0,17	0,66	1,50E-04	1,5	1,8	7,9			90,3						Deposits
5	2,50	0,57	0,22	0,68	1,64E-04	2,0	0,5	5,2			94,3						Deposits
6	2,80	1,03	0,10	0,66	1,51E-04	1,0	0,7	7,0			92,3						Deposits

D.EQ. - Calculated diameter of sphere shape bubble

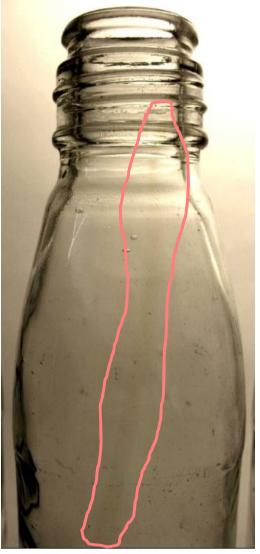

TR. - Traces

Comments:

- Medium size bubbles containing outstandingly high levels of sulfur dioxide; there was observed a large amount of bubbles in the delivered bottles, often located in straps along the bottles.
- High content of sulfur dioxide indicates that the bubbles were most probably formed by the temperature reboil caused by the local glass reheating or glass temperature instability in the low temperature zone – distributor, forehearth, and/or feeder. The glass melt is sensitive to any increase of temperature. The SO2 solubility in the melt decreases significantly with increasing temperature, therefore excessive SO2 is separated into bubbles.
- The bubble appearance in the stripes could show evidence of the local problem more downstream of the process in the low temperature zone – for instance the burner flames may touch the glass level, causing the local glass reheating.
- The high SO2 levels present in bubbles as well as comparably larger bubble sizes may also indicate some contamination of the glass melt e.g. by dropping of the sulfur containing deposits which may settle at the colder corners or zones of the superstructure, the possible source location could be also at the lower temperatures distributor, forehearth, and/or feeder.

Sample Bottles

The Deposits inside the bubble in passing through light


GLASS SERVICE REPORT ON AMBER STREAK ANALYSIS

GLASS SERVICE, Inc., Rokytnice 60, 755 01 Vsetín, Czech Republic Tel. +420 571 498511, Fax +420 571 498599, E-mail: <u>info@gsl.cz</u> Internet: <u>www.gsl.cz</u>

Comments:

There was observed a distinct amber streak in the Bottle. There should be a possibility of the bubble appearance due to potential melting issues as namely temperature variations and/or pull change, initiating the release of the dead zones containing the stagnant glass having the different redox state.

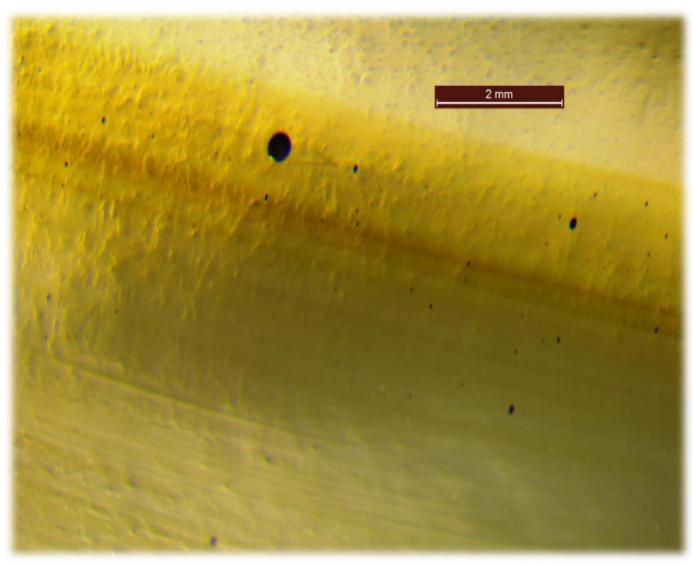
Amber streak bottle

Laboratory report for Contract No. 1801/2013 ZENTRUM FÜR GLAS- und UMWELTANALYTIK GmbH

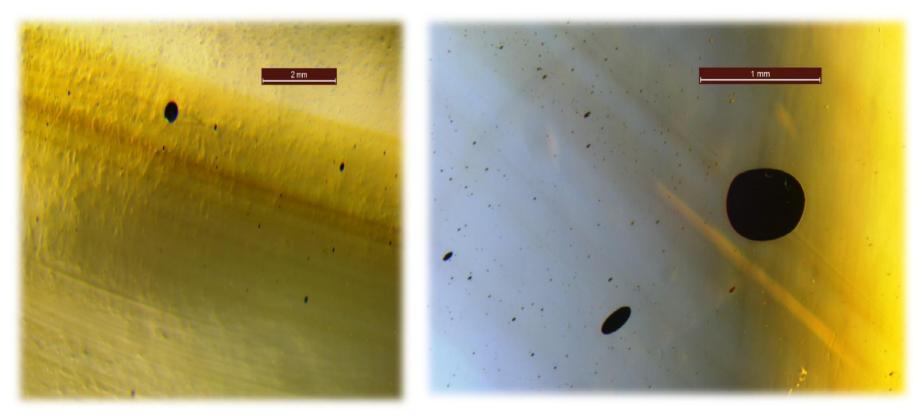
Samples received on:	13.11.2013
Test period:	From 14.11.2013 till 15.11.2013
Sampling:	By AGI
Sample description:	Big Bottle with amber stripes
Applied method:	Microscopic glass investigation LIBS (Laser Induced Breakdown Spectroscopy) bubble content determination by mass spectrometry.

Results:

In the object to be examined is a bottle with amber stripes. Along the strip are round inclusions at a size of about 300-600 microns and the color of them are black. At the right angle, the inclusions appear shiny metallic.


With LIBS there could be detected a high content of iron, manganese and vanadium at the position of the black inclusions. Moreover, there are still small amounts of chromium and nickel. Furthermore, an increased iron oxide content in a measurement can be compared to the smear determine glass.

The investigation shows that the black inclusion probably residues of a steel with alloying elements manganese, chromium, nickel and Vanadium.



Photographic recording of the glass bottle with amber stripes. The right figure shows two of the larger inclusions are highlighted.

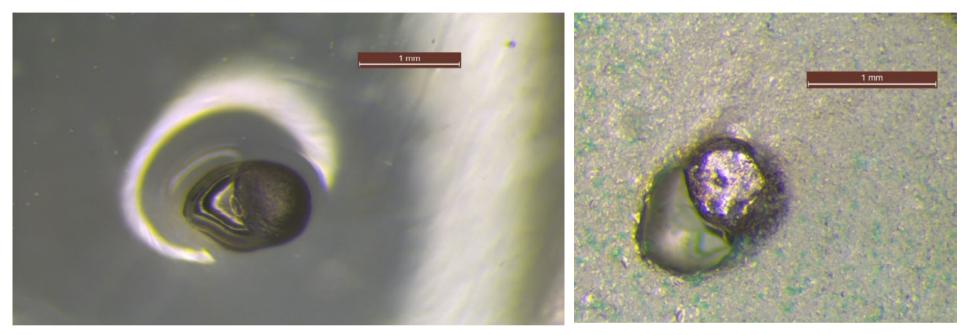
Micrograph of inclusions

Micrograph of inclusions

1

Further Detail of black inclusions.

Laboratory report for Contract No. 1802/2013 ZENTRUM FÜR GLAS- und UMWELTANALYTIK GmbH


Samples received on:	: 13.11.2013
Test period:	: From 14.11.2013 till 15.11.2013
Sampling:	: By AGI
Sample description:	: Small bottles of bubbles, glass defects
Applied method:	: Microscopic glass investigation LIBS (Laser Induced Breakdown Spectroscopy) bubble content determination by mass spectrometry.

Results:

The object to be examined is two small bottles of bubbles and a black enclosure with a size of about 500 microns.

The inclusion has been sanded. The included foreign body is shining metallic. With LIBS, a high content of iron and manganese could be detected at this point. It also the elements copper, vanadium, molybdenum, and chromium are found.

The investigation shows that trapped debris is probably residues of a steel alloy with the above ingredients. This for an example can be reached during the batching process or cullet.

Micrograph of black inclusion

Micrograph of sanded foreign body

ANALYSIS RESULTS OF BUBBLE CONTENT DETERMINATION

CONTENT	BLISTER/ BUBBLE A	BLISTER/ BUBBLE B	BLISTER/ BUBBLE C			
[%]						
H2	•	-	-			
H2O	-	-	-			
Не	-	-	-			
CO2	6,0	1,6	6,6			
со	•	-	-			
02	-	-	-			
N2	(1,1)	-	-			
SO2	93	98	93			
Ar	-	-	-			
Volumen [nl]	70	459	45			
Pressure [mbar]	127	225	84			
Size [mm]	2,250 × 0,368 × 0,144	3,280 × 0,880 × 0,304	0,688 × 0,432 × 0,288			

Components below the detection limit are not listed. The percentage content of disclosures relate to the sum of the analyzed components.

The sums of content differ due to rounding part of 100%. The values in parentheses are not sure they are at the limits of detection.

WIEGAND GLASS - CONCLUSION

It may be concluded as follows:

The possible source location could be near feeder 27 and feeder 28 entrance in Working End since all bubbles contain High level of SO2 and larger in size indicating contamination of the glass melt by dropping of sulphur containing deposits.

or

- The bubble appearance in the stripes with condensate could show evidence of the local problem more downstream of the process in the low temperature zone especially near feeder 27 and feeder 28 entrance in Working End– for instance the burner flames may touch the glass level, causing the local glass reheating.
- There might be some trapped debris is probably residues of a steel alloy with high content of iron and manganese lying at the bottom most probably near feeder 27 and feeder 28 entrance in Working End since those two feeders were the most problem driven areas. The amber streak and bubbles might be the result of this trapped debris.

THANK YOU